
ProjectX — Role-based Folder Structure + Admin
Control Mapping
This document proposes a clear folder layout for your existing PHP project (no PDO) and a detailed
mapping of admin pages/actions to your database schema. It focuses on starting with Admin controls
(as you asked), then outlines folder templates for other roles (head, senior, member, applicant, guest),
shared components, and recommended ACL checks.

Goals

Keep code organized by role for easier permissions and UI separation.
Map admin UI/actions directly to DB tables from your dump.
Keep a consistent actions/ vs pages/ pattern: pages render UI, actions perform POST/
CRUD.
Use simple mysqli (prepared statements) and role checks in a central middleware.

Top-level folder structure

/ (project root)

├─ app/
│ ├─ admin/ # Admin pages & actions
│ │ ├─ pages/ # UI pages (GET)
│ │ │ ├─ dashboard.php
│ │ │ ├─ users/
│ │ │ │ ├─ index.php
│ │ │ │ ├─ view.php
│ │ │ │ └─ edit.php
│ │ │ ├─ projects/
│ │ │ │ ├─ index.php
│ │ │ │ ├─ create.php
│ │ │ │ └─ edit.php
│ │ │ ├─ payments.php
│ │ │ ├─ invoices.php
│ │ │ ├─ coupons.php
│ │ │ ├─ documents.php
│ │ │ ├─ credentials.php
│ │ │ ├─ resources.php
│ │ │ ├─ timesheets.php
│ │ │ └─ reports.php
│ │ └─ actions/ # POST/PUT/DELETE endpoints
│ │ ├─ users_create.php
│ │ ├─ users_update.php
│ │ ├─ users_delete.php
│ │ ├─ projects_create.php

1.
2.
3.

4.

1

│ │ ├─ projects_update.php
│ │ ├─ projects_delete.php
│ │ ├─ payments_mark_refunded.php
│ │ ├─ coupons_toggle.php
│ │ └─ ...
│ ├─ head/ # same pattern for head role
│ ├─ senior/ # same pattern for senior role
│ ├─ member/ # same pattern for member role (limited)
│ ├─ applicant/ # application / resume pages
│ └─ public/ # public pages accessible without role
├─ includes/
│ ├─ init.php # DB connection, session start, common helpers
│ ├─ auth.php # role-check functions, is_admin(),
require_role()

│ ├─ header.php
│ └─ footer.php
├─ assets/
│ ├─ css/
│ └─ js/
├─ api/ # ajax endpoints if you use JS-driven UI
├─ actions/ # legacy/global actions (if any)
├─ storage/ # uploaded files (resumes, docs, images)
└─ vendor/ # external libs if used

Keep pages/ files only responsible for rendering and fetching read-only data;
actions/ files should validate, check role, perform DB changes, and redirect back to

pages with flash messages.

Central auth & DB initialization (includes/init.php)

Create a single init.php that every page/action includes as the first line.
Responsibilities:
session_start()

open mysqli connection ($DB = new mysqli(...)) — use charset utf8mb4
set timezone/locale defaults
require auth.php which exposes current_user() , require_role($role) ,
check_permission($capability)

Example usage in admin page:

require_once __DIR__ . '/../../includes/init.php';

require_role('admin');

// now you can query DB using $DB

•
•
•
•
•
•

2

Admin: pages & actions mapped to DB tables

Below are the recommended admin pages and the DB tables they manage (from your dump). For each
page I list the main actions and suggested filenames.

1) Admin Dashboard

File: app/admin/pages/dashboard.php
Displays KPIs: total users, active projects, open applications, pending payments, revenue
(payments), recent error_logs, recent audit_logs.
Queries: COUNT(*) FROM users , COUNT(*) FROM projects WHERE status='open' ,
SELECT SUM(amount) FROM payments WHERE status='success' , SELECT * FROM
error_logs ORDER BY at DESC LIMIT 10 .

2) Users Management

Pages:
app/admin/pages/users/index.php — list users with filters (role, status)
app/admin/pages/users/view.php — view profile + related resources (applications,

invoices, certificates)
app/admin/pages/users/edit.php — admin edit user (role/status)

Actions:
app/admin/actions/users_create.php — create user (admin-only)
app/admin/actions/users_update.php — update profile, role, status
app/admin/actions/users_delete.php — hard-delete or set status='inactive'

DB tables: users , profile_cards , certificates , applications , payments ,
invoices .

3) Projects Management

Pages:
app/admin/pages/projects/index.php — list + search projects
app/admin/pages/projects/create.php — form to create project
app/admin/pages/projects/edit.php — update project, seats, status

Actions:
app/admin/actions/projects_create.php

app/admin/actions/projects_update.php

app/admin/actions/projects_delete.php

DB tables: projects , project_milestones , applications , offers .

4) Applications & Offers

Pages:
app/admin/pages/applications/index.php — list and filter by project/decision
app/admin/pages/applications/view.php — view resume, make decision
app/admin/pages/offers/index.php — list offers

Actions:
app/admin/actions/application_decide.php — update decision + decision_note
app/admin/actions/offers_send.php — create offers row (link to templates)

DB tables: applications , offers , offer_templates .

•
•

•

•
•
•

•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

3

5) Payments & Invoices

Pages:
app/admin/pages/payments.php — list payments, filter, export CSV
app/admin/pages/invoices.php — list invoices, view invoice (QR), re-generate

Actions:
app/admin/actions/payments_update.php — change status (mark refunded)
app/admin/actions/invoices_create.php — create invoice, set invoice_no

DB tables: payments , invoices , coupons .

6) Coupons

Pages: app/admin/pages/coupons.php (list/create/edit)
Actions: app/admin/actions/coupons_create.php , coupons_update.php ,
coupons_toggle.php (activate/deactivate)

DB table: coupons .

7) Documents & Document Acknowledgement

Pages: app/admin/pages/documents.php , app/admin/pages/documents/view.php
Actions: app/admin/actions/documents_upload.php , documents_delete.php
Admin can view doc_ack records (who acknowledged which doc).
DB tables: documents , doc_ack .

8) Credentials (secure storage)

Pages: app/admin/pages/credentials.php — list labels, visible roles
Actions: app/admin/actions/credentials_create.php , credentials_update.php ,
credentials_delete.php

Store enc_value but do not keep encryption keys in DB.
DB table: credentials .

9) Resources & Assignments

Pages: app/admin/pages/resources.php , resources_assign.php
Actions: app/admin/actions/resources_create.php , assign_resource.php ,
return_resource.php

DB: resources , resource_assignments .

10) Timesheets & Reports

Pages: app/admin/pages/timesheets.php , reports.php (aggregated hours, billable
summaries)
DB: timesheets , daily_reports (use both).

11) Logs & Queue

Error logs page: app/admin/pages/error_logs.php — view recent errors and stack traces
Audit logs page: app/admin/pages/audit_logs.php — search by user/action/entity
Mail queue monitor page: app/admin/pages/mail_queue.php — retry / flush
DB: error_logs , audit_logs , mail_queue .

•
•
•
•
•
•
•

•
•

•

•
•
•
•

•
•

•
•

•
•

•

•

•

•
•
•
•

4

12) Certificates

Pages: app/admin/pages/certificates.php — list and generate QR
Actions: app/admin/actions/certificates_generate.php
DB: certificates .

Example file responsibilities (pattern)

app/admin/pages/users/index.php

require init + require_role('admin')
fetch paginated users list using prepared SELECT with filters

render table + links to view/edit

app/admin/actions/users_update.php

require init + require_role('admin')
validate POST params
prepare UPDATE users SET name=?, role=?, status=? WHERE id=?
write audit log into audit_logs
redirect back to users list with flash

ACL & Permission model

Use role strings exactly as in DB: guest|applicant|member|senior|head|admin .
Create helper require_role($role_or_array) which exits/redirects if the current user lacks
that role.
For finer permissions, implement check_permission($capability) that maps to
capabilities such as projects.create , users.manage , finance.view and map those to
roles in a small config array config/permissions.php .

Example mapping (in config/permissions.php):

return [

 'admin' => ['*'],

 'head' => ['projects.*','resources.*','users.view','timesheets.view'],

 'senior' => ['projects.view','applications.review','timesheets.submit'],

 'member' => ['projects.view','timesheets.submit'],

 'applicant' => ['applications.create'],

 'guest' => []

];

Shared components & reusable helpers

includes/pagination.php — common pagination helper

•
•
•

•
•
•

•

•

•
•
•
•
•

•
•

•

•

5

includes/upload.php — safe file upload with extension whitelist, storage path, and virus-
scan hook (if available)
includes/flash.php — flash messages in session
includes/audit.php — function audit($user_id,$action,$entity,$entity_id,
$meta_array) that inserts into audit_logs

Security & operational notes

All DB writes must be done through prepared statements ($stmt = $DB->prepare(...) and
bind params) to prevent SQL injection.
Passwords: continue using bcrypt/argon2 via password_hash() and password_verify() .
Uploaded files: store outside webroot or protect with .htaccess and serve via a controller
that checks permission.
Rate-limit admin actions that change financial state (payments/refunds).
For long-running tasks (generate invoices, send bulk emails), use background workers (cron +
CLI script) and the mail_queue table.

Next steps I already prepared for you

A ready-to-use folder skeleton (file list) for the Admin role with page and action filenames
(above).
A mapping of each Admin page/action to the database tables and key queries to implement.
Middleware & helper suggestions for auth, audit, upload, flash messages.

If you want, I can now: - generate the actual PHP skeleton files (empty templates with
require_once '../../includes/init.php'; require_role('admin'); and file-specific

placeholders) and put them into a zip for download; or - produce the exact SQL queries for each admin
action (e.g., projects_create.php insert query + parameter list + example prepared statement code
using mysqli) — useful if you want code-ready actions.

Tell me which one you want me to produce first and I will generate it right away.

Document created: ProjectX - Role-based Folder Structure & Admin Mapping

•

•
•

•

•
•

•
•

1.

2.
3.

6

	ProjectX — Role-based Folder Structure + Admin Control Mapping
	Goals
	Top-level folder structure
	Central auth & DB initialization (includes/init.php)
	Admin: pages & actions mapped to DB tables
	1) Admin Dashboard
	2) Users Management
	3) Projects Management
	4) Applications & Offers
	5) Payments & Invoices
	6) Coupons
	7) Documents & Document Acknowledgement
	8) Credentials (secure storage)
	9) Resources & Assignments
	10) Timesheets & Reports
	11) Logs & Queue
	12) Certificates

	Example file responsibilities (pattern)
	ACL & Permission model
	Shared components & reusable helpers
	Security & operational notes
	Next steps I already prepared for you

